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Abstract 

One of the biggest challenges in cognitive neuroscience is developing diagnostic tools for 

Disorders of Consciousness (DoC). Detecting dynamical connectivity brain states seems 

promising, specifically those linked to transient moments of enhanced cognitive states in 

patients. A growing body of evidence indicates that fMRI brain states properties are strongly 

modulated by the level of consciousness , as theoretically predicted by whole brain modeling. 

fMRI-based brain states, however, have very limited practical application due to 

methodological constraints.  

In this work we defined EEG-based brain states and explored their potential as a bedside, real-

time tool to detect transient windows of enhanced brain states. We analysed data from 237 

individual patients with chronic and acute DoCs -100 Unresponsive Wakefulness Syndrome 

(UWS), 96 Minimally Conscious State (MCS) and 41 acute- and 101 healthy controls obtained 

in three independent research centers (Fudan hospital in Shanghai, Pitié Salpêtrière in Paris 

and Purpan hospital in Toulouse).  

We determined five EEG functional connectivity brain states, and show that their probability 

of occurrence is strongly related to the level of consciousness. Distinctively, high entropy brain 

states are exclusively found in healthy subjects, while low-entropy brain states increase their 

probability with DoC’s severity, spanning from acute unarousable comatose state, to more 

chronic DoC’s patients, who are awake but show fluctuating (MCS) or absent awareness (VS). 

Furthermore, the brain state probability distribution of each individual subject —and even the 

presence of certain key brain states— significantly vary with the patients’ outcome. We also 
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tested whether our procedure has an actual potential for real-time, bedside brain state detection, 

and proved that we can reliably estimate the concurrent brain state of a patient in real time, 

paving the way for a broad application of this tool for DoC patients’ diagnosis, follow-up, and 

neuroprognostication. 
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Abbreviations: CRS-R = Coma Recovery Scale Revised; DoC = Disorders of Consciousness; 

GCS = Glasgow Coma Scale; LZC = Lempel Ziv Complexity; MCS = Minimally Conscious 

State; RT = real-time; UWS = Unresponsive Wakefulness Syndrome; wSMI = weighted 

Symbolic Mutual Information; WE = Weighted Entropy. 

 

Introduction  

Diagnosing disorders of consciousness (DoC) and prognosing the patients’ evolution remain a 

major medical challenge. DoC classification is currently based on arousal and awareness 

clinical examination —to allow patient’s labeling into a heterogeneous set of categories whose 

precise definitions are still evolving.1,2 It has been argued that these clinical examinations are 

intrinsically hindered by its behavioral nature. Indeed, assessments of key cognitive processes 

underpinning consciousness recovery are subjective and limited to “overt” cognitive processes. 

Therefore, they are prone to biases due to confounding factors affecting patients' motor output 

https://www.zotero.org/google-docs/?XliZ0P
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activity (e.g. locked-in syndrome)3,4 or language processing (e.g. aphasia).5,6 This results in a 

high diagnostic error rate, estimated at 40 percent,7 that many times decides upon the patient’s 

life. 

Built upon the theoretical framework of connectionist theories of consciousness,8–12 several 

neuroimaging tools have been recently proposed to inform the clinician of “covert” cognitive 

processes, obscure to bedside behavioral examinations. These techniques include measures 

relying on active cognitive tasks,13–17 measures based on spontaneous brain activity,18–22 and 

methods based on the combination of physical external stimulation and EEG responses.8,23,24 

Among these methods, one of the most promising is based on studying signatures of 

consciousness through the detection of fMRI-based “brain states”,19,25–28 which is especially 

well suited to detect spontaneous, transient windows of covert cognition. Brain states are 

recurrent functional connectivity patterns obtained by unsupervised clustering of dynamical 

connectivity matrices usually lasting anywhere from 5 to 60 seconds.25 Research shows that 

the properties of the brain states are strongly modulated by arousal levels and consciousness 

levels. In awake humans and monkeys there is a rich variety of brain states —including states 

of high connectivity, high entropy, and negative correlations.19,25,26,28 By contrast, in DoC or 

under sedation the brain states found radically change: the richer brain states disappear and the 

repertoire of possible configurations becomes smaller —only low-connectivity, low-entropy 

states shaped by the underlying structural connectivity remain.18,26 These findings are inline 

with dynamical systems simulations29–31 showing that, for low coupling strength between brain 

areas —a configuration resembling DOC condition—spontaneous neuronal activity is still 

present but restricted to a single stable connectivity pattern, defined by the fixed network of 

structural connectivity. As connectivity between brain regions increases, the system transitions 

to multistability, with a diverse set of possible patterns. This transition is deemed paramount at 

sustaining conscious states.  

However, currently brain states are defined for fMRI —an expensive technique ill-suited for 

DoC evaluation. DoC patients are difficult to transfer to the scanner, many times carrying life-

supporting electronic (MRI incompatible) devices. Furthermore, detecting windows of 

momentarily enhanced covert cognition involves repeated assessments across long periods, 

which is impossible to perform in an MRI scanner. In contrast, EEG-defined brain states 

estimated bedside could become an invaluable tool as they allow for real-time brain state 

detection. This would open the possibility for a more accurate evaluation of residual brain 

https://www.zotero.org/google-docs/?fwXKR1
https://www.zotero.org/google-docs/?7yjU59
https://www.zotero.org/google-docs/?uI6djL
https://www.zotero.org/google-docs/?r9v9Cn
https://www.zotero.org/google-docs/?JgxrF2
https://www.zotero.org/google-docs/?w5zJgR
https://www.zotero.org/google-docs/?RJnhHK
https://www.zotero.org/google-docs/?BBFS0W
https://www.zotero.org/google-docs/?5ZG1QO
https://www.zotero.org/google-docs/?vdHiPT
https://www.zotero.org/google-docs/?3ESHwJ
https://www.zotero.org/google-docs/?hYDDr9
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activity in DoC patients to eventually allow designing optimal individually-tailored medical-

patient interaction and stimulation in their windows of responsivity. 

For this research, we studied one of the largest reported DoC patient cohorts —237 patients 

and 101 controls from three independent research sites— to bring EEG-based consciousness 

detection closer to a reality in clinical settings. Contrary to previous reports which have been 

based almost exclusively on chronic DoC data —Unresponsive Wakefulness State (UWS) and 

Minimally Conscious State (MCS)—, we combined data from chronic patients and acute 

patients (i.e. comatose) to define EEG brain states and study its potential as a diagnostic and 

prognostic tool along the entire DoC axis (Fig. 1A). We found and characterized EEG 

functional connectivity brain states, and showed that their probability of occurrence is strongly 

related to the level of consciousness. In particular, high entropy brain states are almost 

exclusively found in conscious subjects, while low-entropy brain states increase their 

probability with DoC severity. We found that patients displayed transient patterns of functional 

connectivity that resembled high entropy brain states characteristic of healthy subjects. These 

patterns' probability of occurrence was informative regarding DoC diagnosis and even the 

outcome of each patient. We finally showed that these transient states of enhanced connectivity 

—possibly reflecting transient moments of enhanced covert consciousness— could be reliably 

detected in a bedside, real-time setting (Fig. 1B). 
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Figure 1. Analysis pipeline. A) Offline calculation of brain states. Three datasets were used 

from three different Centers, including healthy controls and three patients categories 

(minimally conscious state [MCS], uws Unresponsive Wakefulness State [UWS] and Acute 

patients). After obtaining windowed wSMI matrices we performed a clustering analysis to 

obtain 5 brain states, whose probability and relation to patient's prognosis was estimated. B) 

Real-time calculation of brain states. Simulating a bedside situation, we processed every 20 s, 

16 s of raw EEG data to obtain raw-data wSMI matrices. Using previously obtained brain 

states, we mapped wSMI matrices into the closest brain state, obtaining this way a real time 

brain state.   

 

Materials and methods  

Ethics statement  

All data collections have been approved by their respective ethical committees. The Shanghai 

study was approved by the Ethical Committee of the Huashan Hospital of Fudan University 

(approval number: HIRB-2014-281). The Paris study was approved by the Ethical Committee 

of the Pitié Salpêtrière under the French label of ‘Recherche en soins courants’ [routine care 

research]. The Toulouse study was approved by the ethics committee of the University Hospital 

of Toulouse, Toulouse, France (approval number: RC 31/20/0441). All data collections and 

analyses were carried out in accordance with the Declaration of Helsinki. 
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Participants and Recordings 

A total of 237 patients and 101 control subjects were included in the present study (Table 1).  

The EEG recording systems used by the three data collections were Electrical Geodesics 

(HCGSN, 257-channel net cap for the Shanghai and Paris datasets, 128-channels for the 

Toulouse dataset) sampled at 1000 Hz for Shanghai and 250 Hz for Paris and Toulouse. For 

computational purposes and to match the electrode number between datasets we downsampled 

the Shanghai and Paris datasets to 128 channels, using the locations of the Hydrocel Geodesic 

Sensor Net-128, by applying the default interpolation method provided by EEGLAB.32 Some 

participants contributed more than one EEG recording (in these cases we averaged within 

subjects results prior to statistical analysis). Age and gender distributions were similar across 

datasets (Table 1). The Toulouse dataset was composed of task-free EEG recordings of acute 

patients, and the Shanghai and Paris datasets were composed of task-related EEG data from 

chronic (MCS and UWS) patients. Multiple clinical assessments were performed by trained 

clinicians, including CRS-R scoring.33,34 See supplementary methods for tasks and diagnostic 

details. 

Dynamic wSMI calculation 

The wSMI is a measure of shared information that detects nonrandom joint fluctuations 

between two EEG signals (i.e: two channels). All details of the procedure can be found in King 

et al.15 The first step is transforming the signals into a string of symbols. We set the parameters 

length of the symbol d to 3, and their temporal separation τ to 8 ms. After translating the two 

signals from different electrodes into symbols, the joint probability is computed. A modified 

version of the canonical mutual information is used, dismissing the interaction between similar 

symbols to remove spurious correlations between EEG signals arising from common 

sources.15,17  

 

 

 

https://www.zotero.org/google-docs/?awXlc9
https://www.zotero.org/google-docs/?vGKVk0
https://www.zotero.org/google-docs/?FgH3rt
https://www.zotero.org/google-docs/?aYXag7
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To make wSMI dynamic, for every EEG session we considered a series of rectangular windows 

of length 16 seconds shifted by 1 second. Within each window, we computed wSMI, producing 

128x128 symmetric connectivity matrices per window and subject. The number of windows 

was different for each subject as it depends on the session length. The Shanghai dataset has 

465 windows per subject while the Paris dataset has 1300 ± 300 (mean ± SD) windows and the 

Toulouse dataset has 1800 ± 800 windows per subject. 

Unsupervised clustering of connectivity matrices 

We applied the k-means clustering algorithm to obtain recurring patterns of connectivity, as 

previously performed in fMRI19,25 and EEG35,36 .We down-sampled the number of windows of 

each subject to 300 (using a larger number of windows per subject did not change the results). 

The purpose of this downsampling is twofold: subsampling reduces the required computational 

resources, and more importantly, makes each EEG recording equally represented in the 

clustering algorithm. We set the number of clusters to k = 5, the number of replicates to 10,000, 

and we used the Manhattan distance as a measure for distance, as done in the literature.25 The 

number of clusters k was chosen using the elbow method where the explained variation is 

plotted against a wide range of k values (3 through 6 in our case) and the optimal k is the one 

where the graph begins to plateau. Replicating prior research, our results are not critically 

dependent on the number of clusters (Fig. S1). After obtaining the centroids, we classified each 

individual connectivity matrix into one of the five centroids or brain states according to their 

distance to the closest brain state. 

Brain state complexity and distribution across DoC 

The brain states obtained by k-means clustering were ordered by decreasing entropy. This was 

done by calculating the entropy of the distribution of wSMI values for each centroid. We also 

calculated the Lempel-Ziv complexity (LZC) for each centroid, which is a measure of the 

irreducible information contained in a sequence. The probability of occurrence of each brain 

state was estimated as the proportion of times each individual connectivity matrix was 

classified as belonging to that brain state. 

To quantify how brain state distributions shifted towards certain brain states we defined a 

weighted entropy (WE) , as: 

𝑊𝐸 = ∑ 𝑝𝑖 ⋅ (1 − 𝐻𝑖)
5
𝑖=1   (1) 

https://www.zotero.org/google-docs/?THmvO7
https://www.zotero.org/google-docs/?JfMWDN
https://www.zotero.org/google-docs/?seHUgR
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Where 𝑝𝑖 is the probability of each brain state and 𝐻𝑖 is its entropy.  

Patients’ Outcome 

We assessed the evolution of patients to explore how brain states might be informative of their 

prognosis. For chronic patients, we defined the possible outcomes as improvement of the 

clinical condition (UWS patients becoming MCS, MCS patients becoming MCS+), 

deterioration (patients dying or going from MCS to UWS), or unchanged clinical condition. 

Similarly, for acute patients we defined the outcomes based on how they evolved from acute 

condition: clinical condition evolving to MCS, to UWS or dying. 

Real-time simulation 

We conducted, as a proof of concept, a real-time simulation analysis where we processed, every 

22 seconds, 16 seconds of raw EEG signal from acute patients, simulating real-time data 

collection and processing. We filtered each segment between 1 and 40 Hz, and no other 

preprocessing or cleaning step was conducted (crucially, no window was discarded). For each 

16 seconds EEG signal we estimated a 128 x 128 wSMI matrix and calculated the distance 

between this “real-time” matrix and the brain states previously defined offline. To explore 

results variability due to brain states definition, we used three different offline brain states 

estimations to classify the real-time matrices: 1) brain states defined for all participants, b) 

brain states defined for patients only and c) brain states defined for the acute patients and their 

controls. We then estimated how real-time and offline brain state classification compared. 

Statistics  

To quantify group differences, we conducted mixed linear models in R37 using RStudio 

1.3.1073 with packages lme4, with the equation  WE ~ Group + (1|Center) where WE is the 

weighted entropy of each participant, Center is a categorical variable indexing the Shanghai, 

Paris and Toulouse datasets respectively, and Group is also a categorical variable for Healthy, 

MCS, UWS and Acute. To get p-values for the group effect WE values were submitted to a 

linear mixed model using the mixed function from the afex package, using the Kenward-Roger 

approximation. We also conducted post-hoc comparisons between Healthy, MCS, UWS and 

Acute using the function lsmeans (package lsmeans).  

https://www.zotero.org/google-docs/?RzpF7j
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To quantify the effect of rate on the chronic patient’s outcome we conducted a mixed linear 

models with the equation WE ~ Outcome + (1|Center). For the effect of WE on the acute 

patient’s outcome we did not conduct a mixed linear model since acute patients’ data is only 

represented in the Toulouse dataset (i.e. no random variable ‘Center’); we conducted an 

ANOVA with the equation WE ~ Outcome using the aov function in R. 

To quantify the distance between real-time and offline estimations of brain states we followed 

a bootstrap and Jensen Jannon distance analysis.  

Let P = {p1, …, pn} and Q = {q1, …, qn} be two probability distributions, the Jensen-Shannon 

distance is defined as:  

𝐽𝑆(𝑃, 𝑄) = √
1

2
(𝐾𝐿(𝑃 || 

𝑃+𝑄

2
)  +  𝐾𝐿(𝑄 || 

𝑃+𝑄

2
))  (2) 

where KL(P || Q) is the Kullback-Leibler divergence defined as: 

𝐾𝐿(𝑃 || 𝑄) =  ∑ 𝑝𝑖 ⋅ 𝑙𝑛(
𝑝𝑖

𝑞𝑖
)𝑛

𝑖=1   (3) 

We divided the set of acute patients into two random groups of 20 subjects and calculated the 

average probability distribution of each set, as classified by the offline acute brain states. Then, 

we computed the Jensen-Shannon distance between them and repeated this procedure 10,000 

times to generate a distribution of distances. We divided again into two random groups of 20 

but the second group was classified using the real-time brain states. By comparing these two 

distributions we can estimate how different real-time and offline classifications are. 

Software 

All data was processed using custom MatLab, R and Python software, using specific libraries. 

We used the Python libraries Nice,38 MNE39 and scikit-learn.40 Codes are available at 

https://github.com/dellabellagabriel/doc-brain-states 

https://www.zotero.org/google-docs/?lC1DgK
https://www.zotero.org/google-docs/?btzmyW
https://www.zotero.org/google-docs/?9tkbUm
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Results  

Detection of EEG brain states 

We first explored whether brain states can be meaningfully found in EEG. We found five EEG-

brain states, showing distinctive connectivity patterns (Fig. 2A). These patterns are robust, as 

we detected them when varying the number of brain states from 3 to 10 (Fig. S1) and when 

exploring all datasets separately (Fig. S2). We sorted the brain states according to their entropy 

level (Fig. 2A) and we numbered them in decreasing order. Consistently with previous findings 

in fMRI,19,26–28 brain states 1 and 2 —showing the highest entropy and complexity (Fig. 2B)— 

displayed the largest connectivity range, including both weak and strong connections between 

electrodes in a well-defined topographical map. They show two clear, bilateral parietal hubs of 

connectivity including long distance connectivity (Fig. S3). Brain state 1 was characterized by 

the highest complexity and entropy (Fig. 2B), reflecting a conserved brain wide functional 

network coordination typically associated with the awake state.19 In the other extreme of the 

entropy scale, brain states 4 and 5 had a markedly different pattern: a very narrow, low 

connectivity range in which connections are homogeneously distributed in the scalp (Fig. 2A) 

across all electrode distances (Fig. S3). A hierarchical decomposition analysis of the brain state 

space revealed the similarities —and their positions in the multidimensional space— between 

brain states. A cluster composed by states 4 and 5 were the most similar ones, subsequently 

merging with brain states 3 and 2 (Fig. 2D). Brain state 1 merged the remaining ones at a very 

high distance (Fig. 2D). 

https://www.zotero.org/google-docs/?If63YX
https://www.zotero.org/google-docs/?R9AiGB
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Figure 2. EEG brain states and their distribution DOC. A) brain states ordered by entropy 

from 1 (high entropy) to 5 (low entropy). Topoplot colormaps limits are set to their max and 

min values. Brain states 1, 2, and 3 have a wide variety of values whereas states 4 and 5 have 

more uniform wSMI values. B) Lempel-Ziv complexity as a function of entropy for every brain 

state. States with a greater variance will have higher values of entropy and LZ complexity as 

well. C) Brain states probability distributions across all groups. Brain state 1 is mostly present 

in healthy subjects, whereas brain state 5 increases its probability with DoC severity. D) 

Dendrogram clustering showing distances between brain states. E) Brain states probability 

distributions for all groups. Mass distribution shifts towards high values as DoC severity 

increases. F) Weighted entropy for all groups.  

 

EEG brain states rates of occurrence across levels of consciousness 

DoC modulated brain state distribution across groups (Fig. 2C, D). Weighted entropy (WE) 

shifted towards higher values in patients as compared to controls as DoC severity increased 

from MCS to UWS to acute (Fig. 1E) (F(3,153.1) = 25.45, p = 2x10-13). Using the centroids 

obtained from both controls and patients data we found signitivative differences between 

controls and all patient’s groups (Healthy vs. MCS [t-ratio(294.8) = -4.497, p = 0.0001], Healthy 

vs. UWS [t-ratio(294.9) = -6.081, p < 0.0001], Healthy vs. Acute [t-ratio(82.1) = -5.967, p < 0.0001] 

) but, within patients, only between MCS and Acute ([t-ratio(54.1) = -2.883, p = 0.028]). Both 

the probability of each state (Fig. 2C) and the average weighted entropy (Fig 2F) were 
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consistently modulated by the participant’s condition: As the level of consciousness decreases, 

the probability of high entropy diminishes (Fig. 2C, left panels), the probability of low-entropy 

states increases (Fig. 2C, right panels) and the average weighted entropy increases (Fig. 2F).   

EEG brain states and their relation with patients’ diagnosis and 

prognosis 

Next, we run the clustering algorithm excluding control subjects’ data, to zoom in the region 

of the multidimensional space the patients data occupy, and obtain a finer-grained clustering. 

The new brain states greatly resembled those including control subjects data (Fig. 3A and Fig. 

S1). New brain state 1 displays a similar topography than brain state 1 in Fig. 2A, although 

with lower entropy values (consistent with the fact it is calculated on patients data only), 

suggesting that some patients display traces of awake-like brain states. As expected from our 

earlier analysis, both the probability of each individual state (Fig 3B) and WE (Fig 3C, D) 

changes across groups. To quantify this, we performed another mixed linear model analysis. 

Weighted entropy (WE) shifted towards higher values in patients as compared to controls as 

DoC severity increased from MCS to UWS to acute (Fig. XE) (F(3,183.82) = 18.7, p = 1.2x10-10). 

Using the centroids obtained from patients’ data only we found signitivative differences 

between patient’s groups (MCS vs. UWS [t-ratio(332.1) = -2.793, p = 0.0282]; MCS vs. Acute 

[t-ratio(72.2) = -3.879, p = 0.0013]; UWS vs. Acute [t-ratio(71.6) = -2.641, p = 0.0487], Fig. 3D).  

Next we explored the potential of our methodology in patient’s prognosis. We found a 

significant relation between patients' outcome and WE both for chronic (F(2,178.6) = 5.03, p = 

0.007; Fig. 3E) and Acute (F(2,38) = 5.947, p = 0.00566; Fig. 3F) patients. Patients improving 

their condition showed a lower WE entropy. In contrast, those patients that were going to 

worsen their medical condition had higher weighted average entropy.  
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Figure 3. Brain states in diagnosis and prognosis. A) brain states defined including only 

patients data. Topoplot colormaps limits are set to their max and min values. B) Probability 

distribution of all 5 brain states across all groups. New brain states 1 and 2 now appear in all 

groups and monotonically diminishes with DOC severity, while brain state 5 increases its 

probability with DoC severity. C) Brain states probability distributions for all groups. D) 

Weighted entropy for all groups. E) Weighted entropy as a function of chronic patients' 

outcome. E) Weighted entropy as a function of acute patients’ outcome. 

Real-time simulation 

Lastly, we explored the actual potential of our methodology in real-time, bedside settings. We 

calculated windowed wSMI for each segment of raw EEG signal and mapped them into one of 

the five previously defined brain states from the same patients (Fig. 1B, 4A). For comparison 

purposes we also classified the matrices against brain states calculated for all patients (Fig. 4B) 

and all participants (Fig. 4C). Then we estimated how different online and offline brain states 

distributions are, using the Jensen Jannon divergence. The divergence between RTs and offline 

distributions was not significantly different from random fluctuations when classifying real-

time data according to the offline brain states of the same patients (Fig. 4A, p = 0.81) and all 

patients (Fig. 4B, p = 0.28). However, the distance between real-time and offline was 

significantly different from random fluctuations when considering all participants (Fig. 4C, p = 
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0.0007), evidencing that brain state definition strongly affected the real-time brain state 

definition. 

 

Figure 4. Estimation of EEG brain states in a real-time simulation. Offline and real-time 

probability distributions for brain states of acute patients estimated using offline centroids of 

acute patients only (A and D), all patients (B and E) and all participants (C and F). 

Discussion  

In this work we defined EEG brain states and studied their characteristics in healthy subjects 

and DoC patients. We identified recurrent brain states and showed that their rate of occurrence 

indexed the patient's category and recovery probability. We also successfully tested whether 

our procedure has an actual potential for real-time, patient’s bedside brain state detection, and 

showed that indeed we can reliably estimate in real time the brain state a patient is in. 

Brain states and DoC connectivity  

Our results are in line with previous findings on DoC functional connectivity, as EEG brain 

states presented topographical patterns consistent with already published connectivity patterns 

in wakefulness and DoC.19,25,26 Brain states 1 and 2 showed a remarkable similarity with 

topographies found in healthy subjects in time-averaged wSMI estimations15,17 and correlations 

in fMRI.19 This topography reflects a temporal organization involving long-range coupling 

https://www.zotero.org/google-docs/?pVeqm7
https://www.zotero.org/google-docs/?ee86IW
https://www.zotero.org/google-docs/?66Uv0f
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between brain regions that creates discrete functional connectivity patterns19 characterized by 

the presence of both positive and negative correlations and a clear connectivity hub at bilateral 

parietal cortices. Brain states 4 and 5 also displayed recognizable patterns, being similar to 

patterns found using fMRI in anesthetized monkeys26–28 and DoC patients15,19 in EEG and 

fMRI: highly distributed, homogeneous low connectivity, without negative correlations. 

Theory and modeling 

 

Our results are also consistent with theories of consciousness based on experimental and 

modeling work which emphasize the role of long-distance connectivity underlying conscious 

emergence and mantainence.10,30 Current whole brain models of consciousness propose that 

rich functional dynamics constitutes a signature of consciousness, and these dynamics can only 

be sustained at a certain minimal value of coupling between brain regions. At high coupling 

values there is a continuous and transient exploration of the global workspace, allowing the 

brain to combine segregated and integrated neural dynamics supporting consciousness.8,23,41 

When brain regions start to decouple —due to anesthesia, injury as in DoC, or NREM 

sleep29,30— functional connectivity converges into a pattern of low connectivity resembling the 

anatomy, very stable and long-lasting. This brain state is neither segregated or integrated, as is 

spatially homogeneously and weakly connected. 

 

Using EEG instead of fMRI implies a big methodological challenge for studying brain states 

and its modeling. fMRI signals can be traced to a given brain region and, therefore, a relation 

between functional and structural connectivity can be established. Research shows that 

structural matrices constrain functional connectivity and shape brain states under low states of 

vigilance. The brain activity resided most frequently in a pattern of low connectivity 

resembling the anatomy, which was sustained for longer periods of time in comparison to more 

complex patterns.26,28 The similarity-to-structure organizes the dimension along brain states, 

from those exclusive of conscious condition to those dominating under low vigilance. In this 

work we experimentally overcame the lack of a structural connectivity backbone by organizing 

brain states according to their entropy level.  
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Our results indicate that this sorting highly resembles the anatomical sorting of brain states. 

This similarity suggests that a precise mapping between EEG and fMRI brain states could be 

possible. Future work should study how to model and fit our results without using a structural 

matrix, starting an EEG brain states-based modeling possibly relying on a functionally defined 

connectivity backbone instead of an anatomical one. 

Patients’ classification and outcome. 

Using EEG brain states we were able to discriminate between controls and patients, and, more 

importantly, between DoC categories. Our aim was not to achieve outstanding brain state-based 

classification scores, since using a single methodological approach could hardly outperform 

recently proposed methods based on combining multiple metrics in a multimodal 

approach.38,42,43 The combination of current EEG classification methods with the detection of 

transient windows of covert cognition might provide an invaluable tool for patients' diagnosis 

and prognosis44. Furthermore, even complex brain states presence was indicative of DoC 

category and patients’ outcome. Given that the DoC nomenclatures themselves are still under 

examination and their boundaries and number of categories are not entirely clear, DoC 

definitions might be updated to consider the presence of complex brain states supporting 

transient moments of covert consciousness. 

 

Practical implications and bedside assessment 

EEG brain states allow for the possibility of bedside, real-time states detection and the 

identification of windows of enhanced responsiveness for subsequent intervention. As 

mentioned, richer brain states practically disappear in patients, but traces of them are 

identifiable in all DoC categories. This suggests that the patients' brain briefly visits 

configurations close to the richest brain states —although with much lower average 

connectivity. This transiently rich brain state seems a good candidate to identify windows of 

momentarily enhanced cognition in patients, whose detection could serve for optimal 

communication and intervention. An intervention during brief states of covert consciousness 

might produce a sustained exploration of the brain state repertoire and their associated 

behavioral changes. fMRI brain states in anesthetized monkeys have proven to capture changes 

due to deep-brain stimulation, and a similar approach might be useful in DoC patients, driving 

https://www.zotero.org/google-docs/?7IfMDa
https://www.zotero.org/google-docs/?fenoaL
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the brain state towards cognitively rich configurations. This is especially appealing since our 

results remain virtually unchanged when using a low-density electrode set-up (Fig. S4). 

Conclusions 

In this study, we showed that EEG brain states distribution and properties are strongly related 

to the level of consciousness. High-entropy brain states are almost exclusively found in 

conscious subjects, while low-entropy brain states increase their probability with DoC severity. 

We also found that these patterns' probability of occurrence was informative of the patient's 

prognosis. We finally demonstrated that these transient states of enhanced connectivity —

possibly reflecting transient moments of enhanced covert consciousness— could be reliably 

detected in a bedside, real-time setting. 
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