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Abstract

One of the biggest challenges in cognitive neuroscience is developing diagnostic tools for
Disorders of Consciousness (DoC). Detecting dynamical connectivity brain states seems
promising, specifically those linked to transient moments of enhanced cognitive states in
patients. A growing body of evidence indicates that fMRI brain states properties are strongly
modulated by the level of consciousness , as theoretically predicted by whole brain modeling.
fMRI-based brain states, however, have very limited practical application due to
methodological constraints.

In this work we defined EEG-based brain states and explored their potential as a bedside, real-
time tool to detect transient windows of enhanced brain states. We analysed data from 237
individual patients with chronic and acute DoCs -100 Unresponsive Wakefulness Syndrome
(UWS), 96 Minimally Conscious State (MCS) and 41 acute- and 101 healthy controls obtained
in three independent research centers (Fudan hospital in Shanghai, Pitié Salpétriere in Paris

and Purpan hospital in Toulouse).

We determined five EEG functional connectivity brain states, and show that their probability
of occurrence is strongly related to the level of consciousness. Distinctively, high entropy brain
states are exclusively found in healthy subjects, while low-entropy brain states increase their
probability with DoC’s severity, spanning from acute unarousable comatose state, to more
chronic DoC’s patients, who are awake but show fluctuating (MCS) or absent awareness (VS).
Furthermore, the brain state probability distribution of each individual subject —and even the

presence of certain key brain states— significantly vary with the patients’ outcome. We also



tested whether our procedure has an actual potential for real-time, bedside brain state detection,
and proved that we can reliably estimate the concurrent brain state of a patient in real time,
paving the way for a broad application of this tool for DoC patients’ diagnosis, follow-up, and

neuroprognostication.
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Introduction

Diagnosing disorders of consciousness (DoC) and prognosing the patients’ evolution remain a
major medical challenge. DoC classification is currently based on arousal and awareness
clinical examination —to allow patient’s labeling into a heterogeneous set of categories whose
precise definitions are still evolving.>? It has been argued that these clinical examinations are
intrinsically hindered by its behavioral nature. Indeed, assessments of key cognitive processes
underpinning consciousness recovery are subjective and limited to “overt” cognitive processes.

Therefore, they are prone to biases due to confounding factors affecting patients' motor output


https://www.zotero.org/google-docs/?XliZ0P

activity (e.g. locked-in syndrome)®# or language processing (e.g. aphasia).>® This results in a
high diagnostic error rate, estimated at 40 percent,’ that many times decides upon the patient’s
life.

Built upon the theoretical framework of connectionist theories of consciousness,®? several
neuroimaging tools have been recently proposed to inform the clinician of “covert” cognitive
processes, obscure to bedside behavioral examinations. These techniques include measures
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relying on active cognitive tasks, measures based on spontaneous brain activity,'®?2 and

methods based on the combination of physical external stimulation and EEG responses.®2324

Among these methods, one of the most promising is based on studying signatures of
consciousness through the detection of fMRI-based “brain states”,>?>28 which is especially
well suited to detect spontaneous, transient windows of covert cognition. Brain states are
recurrent functional connectivity patterns obtained by unsupervised clustering of dynamical
connectivity matrices usually lasting anywhere from 5 to 60 seconds.?® Research shows that
the properties of the brain states are strongly modulated by arousal levels and consciousness
levels. In awake humans and monkeys there is a rich variety of brain states —including states
of high connectivity, high entropy, and negative correlations.!%%26.28 By contrast, in DoC or
under sedation the brain states found radically change: the richer brain states disappear and the
repertoire of possible configurations becomes smaller —only low-connectivity, low-entropy
states shaped by the underlying structural connectivity remain.82 These findings are inline
with dynamical systems simulations?®-! showing that, for low coupling strength between brain
areas —a configuration resembling DOC condition—spontaneous neuronal activity is still
present but restricted to a single stable connectivity pattern, defined by the fixed network of
structural connectivity. As connectivity between brain regions increases, the system transitions
to multistability, with a diverse set of possible patterns. This transition is deemed paramount at

sustaining conscious states.

However, currently brain states are defined for fMRI —an expensive technique ill-suited for
DoC evaluation. DoC patients are difficult to transfer to the scanner, many times carrying life-
supporting electronic (MRI incompatible) devices. Furthermore, detecting windows of
momentarily enhanced covert cognition involves repeated assessments across long periods,
which is impossible to perform in an MRI scanner. In contrast, EEG-defined brain states
estimated bedside could become an invaluable tool as they allow for real-time brain state
detection. This would open the possibility for a more accurate evaluation of residual brain


https://www.zotero.org/google-docs/?fwXKR1
https://www.zotero.org/google-docs/?7yjU59
https://www.zotero.org/google-docs/?uI6djL
https://www.zotero.org/google-docs/?r9v9Cn
https://www.zotero.org/google-docs/?JgxrF2
https://www.zotero.org/google-docs/?w5zJgR
https://www.zotero.org/google-docs/?RJnhHK
https://www.zotero.org/google-docs/?BBFS0W
https://www.zotero.org/google-docs/?5ZG1QO
https://www.zotero.org/google-docs/?vdHiPT
https://www.zotero.org/google-docs/?3ESHwJ
https://www.zotero.org/google-docs/?hYDDr9

activity in DoC patients to eventually allow designing optimal individually-tailored medical-

patient interaction and stimulation in their windows of responsivity.

For this research, we studied one of the largest reported DoC patient cohorts —237 patients
and 101 controls from three independent research sites— to bring EEG-based consciousness
detection closer to a reality in clinical settings. Contrary to previous reports which have been
based almost exclusively on chronic DoC data —Unresponsive Wakefulness State (UWS) and
Minimally Conscious State (MCS)—, we combined data from chronic patients and acute
patients (i.e. comatose) to define EEG brain states and study its potential as a diagnostic and
prognostic tool along the entire DoC axis (Fig. 1A). We found and characterized EEG
functional connectivity brain states, and showed that their probability of occurrence is strongly
related to the level of consciousness. In particular, high entropy brain states are almost
exclusively found in conscious subjects, while low-entropy brain states increase their
probability with DoC severity. We found that patients displayed transient patterns of functional
connectivity that resembled high entropy brain states characteristic of healthy subjects. These
patterns' probability of occurrence was informative regarding DoC diagnosis and even the
outcome of each patient. We finally showed that these transient states of enhanced connectivity
—rpossibly reflecting transient moments of enhanced covert consciousness— could be reliably

detected in a bedside, real-time setting (Fig. 1B).
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Figure 1. Analysis pipeline. A) Offline calculation of brain states. Three datasets were used
from three different Centers, including healthy controls and three patients categories
(minimally conscious state [MCS], uws Unresponsive Wakefulness State [UWS] and Acute
patients). After obtaining windowed wSMI matrices we performed a clustering analysis to
obtain 5 brain states, whose probability and relation to patient's prognosis was estimated. B)
Real-time calculation of brain states. Simulating a bedside situation, we processed every 20 s,
16 s of raw EEG data to obtain raw-data wSMI matrices. Using previously obtained brain
states, we mapped wSMI matrices into the closest brain state, obtaining this way a real time

brain state.

Materials and methods

Ethics statement

All data collections have been approved by their respective ethical committees. The Shanghai
study was approved by the Ethical Committee of the Huashan Hospital of Fudan University
(approval number: HIRB-2014-281). The Paris study was approved by the Ethical Committee
of the Piti¢ Salpétriére under the French label of ‘Recherche en soins courants’ [routine care
research]. The Toulouse study was approved by the ethics committee of the University Hospital
of Toulouse, Toulouse, France (approval number: RC 31/20/0441). All data collections and

analyses were carried out in accordance with the Declaration of Helsinki.



Participants and Recordings

A total of 237 patients and 101 control subjects were included in the present study (Table 1).
The EEG recording systems used by the three data collections were Electrical Geodesics
(HCGSN, 257-channel net cap for the Shanghai and Paris datasets, 128-channels for the
Toulouse dataset) sampled at 1000 Hz for Shanghai and 250 Hz for Paris and Toulouse. For
computational purposes and to match the electrode number between datasets we downsampled
the Shanghai and Paris datasets to 128 channels, using the locations of the Hydrocel Geodesic
Sensor Net-128, by applying the default interpolation method provided by EEGLAB.32 Some
participants contributed more than one EEG recording (in these cases we averaged within
subjects results prior to statistical analysis). Age and gender distributions were similar across
datasets (Table 1). The Toulouse dataset was composed of task-free EEG recordings of acute
patients, and the Shanghai and Paris datasets were composed of task-related EEG data from
chronic (MCS and UWS) patients. Multiple clinical assessments were performed by trained
clinicians, including CRS-R scoring.333* See supplementary methods for tasks and diagnostic

details.
Dynamic wSMI calculation

The wSMI is a measure of shared information that detects nonrandom joint fluctuations
between two EEG signals (i.e: two channels). All details of the procedure can be found in King
et al.’® The first step is transforming the signals into a string of symbols. We set the parameters
length of the symbol d to 3, and their temporal separation t to 8 ms. After translating the two
signals from different electrodes into symbols, the joint probability is computed. A modified
version of the canonical mutual information is used, dismissing the interaction between similar
symbols to remove spurious correlations between EEG signals arising from common

sources. >’
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To make wSMI dynamic, for every EEG session we considered a series of rectangular windows
of length 16 seconds shifted by 1 second. Within each window, we computed wSMI, producing
128x128 symmetric connectivity matrices per window and subject. The number of windows
was different for each subject as it depends on the session length. The Shanghai dataset has
465 windows per subject while the Paris dataset has 1300 £+ 300 (mean + SD) windows and the

Toulouse dataset has 1800 + 800 windows per subject.

Unsupervised clustering of connectivity matrices

We applied the k-means clustering algorithm to obtain recurring patterns of connectivity, as
previously performed in fMRI*®2?® and EEG*3¢ \We down-sampled the number of windows of
each subject to 300 (using a larger number of windows per subject did not change the results).
The purpose of this downsampling is twofold: subsampling reduces the required computational
resources, and more importantly, makes each EEG recording equally represented in the
clustering algorithm. We set the number of clusters to k = 5, the number of replicates to 10,000,
and we used the Manhattan distance as a measure for distance, as done in the literature.® The
number of clusters k was chosen using the elbow method where the explained variation is
plotted against a wide range of k values (3 through 6 in our case) and the optimal k is the one
where the graph begins to plateau. Replicating prior research, our results are not critically
dependent on the number of clusters (Fig. S1). After obtaining the centroids, we classified each
individual connectivity matrix into one of the five centroids or brain states according to their

distance to the closest brain state.

Brain state complexity and distribution across DoC

The brain states obtained by k-means clustering were ordered by decreasing entropy. This was
done by calculating the entropy of the distribution of wSMI values for each centroid. We also
calculated the Lempel-Ziv complexity (LZC) for each centroid, which is a measure of the
irreducible information contained in a sequence. The probability of occurrence of each brain
state was estimated as the proportion of times each individual connectivity matrix was

classified as belonging to that brain state.

To quantify how brain state distributions shifted towards certain brain states we defined a

weighted entropy (WE) , as:

WE = ¥_1pi- (1—Hy) 1)
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Where p; is the probability of each brain state and H; is its entropy.

Patients’ Outcome

We assessed the evolution of patients to explore how brain states might be informative of their
prognosis. For chronic patients, we defined the possible outcomes as improvement of the
clinical condition (UWS patients becoming MCS, MCS patients becoming MCS+),
deterioration (patients dying or going from MCS to UWS), or unchanged clinical condition.
Similarly, for acute patients we defined the outcomes based on how they evolved from acute

condition: clinical condition evolving to MCS, to UWS or dying.

Real-time simulation

We conducted, as a proof of concept, a real-time simulation analysis where we processed, every
22 seconds, 16 seconds of raw EEG signal from acute patients, simulating real-time data
collection and processing. We filtered each segment between 1 and 40 Hz, and no other
preprocessing or cleaning step was conducted (crucially, no window was discarded). For each
16 seconds EEG signal we estimated a 128 x 128 wSMI matrix and calculated the distance
between this “real-time” matrix and the brain states previously defined offline. To explore
results variability due to brain states definition, we used three different offline brain states
estimations to classify the real-time matrices: 1) brain states defined for all participants, b)
brain states defined for patients only and c) brain states defined for the acute patients and their

controls. We then estimated how real-time and offline brain state classification compared.

Statistics

To quantify group differences, we conducted mixed linear models in R*” using RStudio
1.3.1073 with packages Ime4, with the equation WE ~ Group + (1|Center) where WE is the
weighted entropy of each participant, Center is a categorical variable indexing the Shanghai,
Paris and Toulouse datasets respectively, and Group is also a categorical variable for Healthy,
MCS, UWS and Acute. To get p-values for the group effect WE values were submitted to a
linear mixed model using the mixed function from the afex package, using the Kenward-Roger
approximation. We also conducted post-hoc comparisons between Healthy, MCS, UWS and

Acute using the function Ismeans (package Ismeans).
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To quantify the effect of rate on the chronic patient’s outcome we conducted a mixed linear
models with the equation WE ~ Outcome + (1|Center). For the effect of WE on the acute
patient’s outcome we did not conduct a mixed linear model since acute patients’ data is only
represented in the Toulouse dataset (i.e. no random variable ‘Center’); we conducted an

ANOVA with the equation WE ~ Outcome using the aov function in R.

To quantify the distance between real-time and offline estimations of brain states we followed

a bootstrap and Jensen Jannon distance analysis.

Let P ={p1, ..., pn} and Q = {qu, ..., gn} be two probability distributions, the Jensen-Shannon
distance is defined as:

P+Q P+Q

JS(P,Q) = J§ (KL(P || =2) + KL(Q || =9) )
where KL(P || Q) is the Kullback-Leibler divergence defined as:
KL(P Q) = ZiLipi - In(Rh) &)

We divided the set of acute patients into two random groups of 20 subjects and calculated the
average probability distribution of each set, as classified by the offline acute brain states. Then,
we computed the Jensen-Shannon distance between them and repeated this procedure 10,000
times to generate a distribution of distances. We divided again into two random groups of 20
but the second group was classified using the real-time brain states. By comparing these two

distributions we can estimate how different real-time and offline classifications are.

Software

All data was processed using custom MatLab, R and Python software, using specific libraries.
We used the Python libraries Nice,®® MNE® and scikit-learn.*® Codes are available at

https://github.com/dellabellagabriel/doc-brain-states
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Results

Detection of EEG brain states

We first explored whether brain states can be meaningfully found in EEG. We found five EEG-
brain states, showing distinctive connectivity patterns (Fig. 2A). These patterns are robust, as
we detected them when varying the number of brain states from 3 to 10 (Fig. S1) and when
exploring all datasets separately (Fig. S2). We sorted the brain states according to their entropy
level (Fig. 2A) and we numbered them in decreasing order. Consistently with previous findings
in fMRI,1%2-28 prain states 1 and 2 —showing the highest entropy and complexity (Fig. 2B)—
displayed the largest connectivity range, including both weak and strong connections between
electrodes in a well-defined topographical map. They show two clear, bilateral parietal hubs of
connectivity including long distance connectivity (Fig. S3). Brain state 1 was characterized by
the highest complexity and entropy (Fig. 2B), reflecting a conserved brain wide functional
network coordination typically associated with the awake state.!® In the other extreme of the
entropy scale, brain states 4 and 5 had a markedly different pattern: a very narrow, low
connectivity range in which connections are homogeneously distributed in the scalp (Fig. 2A)
across all electrode distances (Fig. S3). A hierarchical decomposition analysis of the brain state
space revealed the similarities —and their positions in the multidimensional space— between
brain states. A cluster composed by states 4 and 5 were the most similar ones, subsequently
merging with brain states 3 and 2 (Fig. 2D). Brain state 1 merged the remaining ones at a very
high distance (Fig. 2D).
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Figure 2. EEG brain states and their distribution DOC. A) brain states ordered by entropy
from 1 (high entropy) to 5 (low entropy). Topoplot colormaps limits are set to their max and
min values. Brain states 1, 2, and 3 have a wide variety of values whereas states 4 and 5 have
more uniform wSMI values. B) Lempel-Ziv complexity as a function of entropy for every brain
state. States with a greater variance will have higher values of entropy and LZ complexity as
well. C) Brain states probability distributions across all groups. Brain state 1 is mostly present
in healthy subjects, whereas brain state 5 increases its probability with DoC severity. D)
Dendrogram clustering showing distances between brain states. E) Brain states probability
distributions for all groups. Mass distribution shifts towards high values as DoC severity
increases. F) Weighted entropy for all groups.

EEG brain states rates of occurrence across levels of consciousness

DoC modulated brain state distribution across groups (Fig. 2C, D). Weighted entropy (WE)
shifted towards higher values in patients as compared to controls as DoC severity increased
from MCS to UWS to acute (Fig. 1E) (F@iss1) = 25.45, p = 2x10°%). Using the centroids
obtained from both controls and patients data we found signitivative differences between
controls and all patient’s groups (Healthy vs. MCS [t-ratiopos.g) = -4.497, p = 0.0001], Healthy
vs. UWS [t-ratio(pe4.9) = -6.081, p < 0.0001], Healthy vs. Acute [t-ratiog2.1) = -5.967, p < 0.0001]
) but, within patients, only between MCS and Acute ([t-ratiosa.) = -2.883, p = 0.028]). Both
the probability of each state (Fig. 2C) and the average weighted entropy (Fig 2F) were
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consistently modulated by the participant’s condition: As the level of consciousness decreases,
the probability of high entropy diminishes (Fig. 2C, left panels), the probability of low-entropy

states increases (Fig. 2C, right panels) and the average weighted entropy increases (Fig. 2F).

EEG brain states and their relation with patients’ diagnosis and
prognosis

Next, we run the clustering algorithm excluding control subjects’ data, to zoom in the region
of the multidimensional space the patients data occupy, and obtain a finer-grained clustering.
The new brain states greatly resembled those including control subjects data (Fig. 3A and Fig.
S1). New brain state 1 displays a similar topography than brain state 1 in Fig. 2A, although
with lower entropy values (consistent with the fact it is calculated on patients data only),
suggesting that some patients display traces of awake-like brain states. As expected from our
earlier analysis, both the probability of each individual state (Fig 3B) and WE (Fig 3C, D)
changes across groups. To quantify this, we performed another mixed linear model analysis.
Weighted entropy (WE) shifted towards higher values in patients as compared to controls as
DoC severity increased from MCS to UWS to acute (Fig. XE) (F 18382 = 18.7, p = 1.2x1019).
Using the centroids obtained from patients’ data only we found signitivative differences
between patient’s groups (MCS vs. UWS [t-ratiogsz2.1) = -2.793, p = 0.0282]; MCS vs. Acute
[t-ratio2.2) = -3.879, p = 0.0013]; UWS vs. Acute [t-ratiogz1e) = -2.641, p = 0.0487], Fig. 3D).

Next we explored the potential of our methodology in patient’s prognosis. We found a
significant relation between patients' outcome and WE both for chronic (F2,1786) = 5.03, p =
0.007; Fig. 3E) and Acute (F,38) = 5.947, p = 0.00566; Fig. 3F) patients. Patients improving
their condition showed a lower WE entropy. In contrast, those patients that were going to

worsen their medical condition had higher weighted average entropy.
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Real-time simulation

Lastly, we explored the actual potential of our methodology in real-time, bedside settings. We
calculated windowed wSMI for each segment of raw EEG signal and mapped them into one of
the five previously defined brain states from the same patients (Fig. 1B, 4A). For comparison
purposes we also classified the matrices against brain states calculated for all patients (Fig. 4B)
and all participants (Fig. 4C). Then we estimated how different online and offline brain states
distributions are, using the Jensen Jannon divergence. The divergence between RTs and offline
distributions was not significantly different from random fluctuations when classifying real-
time data according to the offline brain states of the same patients (Fig. 4A, p = 0.81) and all
patients (Fig. 4B, p = 0.28). However, the distance between real-time and offline was

significantly different from random fluctuations when considering all participants (Fig. 4C, p =
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0.0007), evidencing that brain state definition strongly affected the real-time brain state

definition.
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Figure 4. Estimation of EEG brain states in a real-time simulation. Offline and real-time
probability distributions for brain states of acute patients estimated using offline centroids of
acute patients only (A and D), all patients (B and E) and all participants (C and F).

Discussion

In this work we defined EEG brain states and studied their characteristics in healthy subjects
and DoC patients. We identified recurrent brain states and showed that their rate of occurrence
indexed the patient's category and recovery probability. We also successfully tested whether
our procedure has an actual potential for real-time, patient’s bedside brain state detection, and

showed that indeed we can reliably estimate in real time the brain state a patient is in.

Brain states and DoC connectivity

Our results are in line with previous findings on DoC functional connectivity, as EEG brain
states presented topographical patterns consistent with already published connectivity patterns
in wakefulness and DoC.1®?2® Brain states 1 and 2 showed a remarkable similarity with
topographies found in healthy subjects in time-averaged wSMI estimations'>!’ and correlations

in fTMRI.*® This topography reflects a temporal organization involving long-range coupling
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between brain regions that creates discrete functional connectivity patterns'® characterized by
the presence of both positive and negative correlations and a clear connectivity hub at bilateral
parietal cortices. Brain states 4 and 5 also displayed recognizable patterns, being similar to
patterns found using fMRI in anesthetized monkeys?®2 and DoC patients>!® in EEG and

fMRI: highly distributed, homogeneous low connectivity, without negative correlations.

Theory and modeling

Our results are also consistent with theories of consciousness based on experimental and
modeling work which emphasize the role of long-distance connectivity underlying conscious
emergence and mantainence.'®*° Current whole brain models of consciousness propose that
rich functional dynamics constitutes a signature of consciousness, and these dynamics can only
be sustained at a certain minimal value of coupling between brain regions. At high coupling
values there is a continuous and transient exploration of the global workspace, allowing the
brain to combine segregated and integrated neural dynamics supporting consciousness.®234!
When brain regions start to decouple —due to anesthesia, injury as in DoC, or NREM
sleep?®3°— functional connectivity converges into a pattern of low connectivity resembling the
anatomy, very stable and long-lasting. This brain state is neither segregated or integrated, as is

spatially homogeneously and weakly connected.

Using EEG instead of fMRI implies a big methodological challenge for studying brain states
and its modeling. fMRI signals can be traced to a given brain region and, therefore, a relation
between functional and structural connectivity can be established. Research shows that
structural matrices constrain functional connectivity and shape brain states under low states of
vigilance. The brain activity resided most frequently in a pattern of low connectivity
resembling the anatomy, which was sustained for longer periods of time in comparison to more
complex patterns.?62® The similarity-to-structure organizes the dimension along brain states,
from those exclusive of conscious condition to those dominating under low vigilance. In this
work we experimentally overcame the lack of a structural connectivity backbone by organizing

brain states according to their entropy level.
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Our results indicate that this sorting highly resembles the anatomical sorting of brain states.
This similarity suggests that a precise mapping between EEG and fMRI brain states could be
possible. Future work should study how to model and fit our results without using a structural
matrix, starting an EEG brain states-based modeling possibly relying on a functionally defined

connectivity backbone instead of an anatomical one.
Patients’ classification and outcome.

Using EEG brain states we were able to discriminate between controls and patients, and, more
importantly, between DoC categories. Our aim was not to achieve outstanding brain state-based
classification scores, since using a single methodological approach could hardly outperform
recently proposed methods based on combining multiple metrics in a multimodal
approach.4243 The combination of current EEG classification methods with the detection of
transient windows of covert cognition might provide an invaluable tool for patients' diagnosis
and prognosis*. Furthermore, even complex brain states presence was indicative of DoC
category and patients’ outcome. Given that the DoC nomenclatures themselves are still under
examination and their boundaries and number of categories are not entirely clear, DoC
definitions might be updated to consider the presence of complex brain states supporting

transient moments of covert consciousness.

Practical implications and bedside assessment

EEG brain states allow for the possibility of bedside, real-time states detection and the
identification of windows of enhanced responsiveness for subsequent intervention. As
mentioned, richer brain states practically disappear in patients, but traces of them are
identifiable in all DoC categories. This suggests that the patients' brain briefly visits
configurations close to the richest brain states —although with much lower average
connectivity. This transiently rich brain state seems a good candidate to identify windows of
momentarily enhanced cognition in patients, whose detection could serve for optimal
communication and intervention. An intervention during brief states of covert consciousness
might produce a sustained exploration of the brain state repertoire and their associated
behavioral changes. fMRI brain states in anesthetized monkeys have proven to capture changes

due to deep-brain stimulation, and a similar approach might be useful in DoC patients, driving
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the brain state towards cognitively rich configurations. This is especially appealing since our

results remain virtually unchanged when using a low-density electrode set-up (Fig. S4).

Conclusions

In this study, we showed that EEG brain states distribution and properties are strongly related
to the level of consciousness. High-entropy brain states are almost exclusively found in
conscious subjects, while low-entropy brain states increase their probability with DoC severity.
We also found that these patterns' probability of occurrence was informative of the patient's
prognosis. We finally demonstrated that these transient states of enhanced connectivity —
possibly reflecting transient moments of enhanced covert consciousness— could be reliably

detected in a bedside, real-time setting.
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