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a b s t r a c t

Over the last years, increasing evidence has fuelled the hypothesis that Autism Spectrum Disorder (ASD)
is a condition of altered brain functional connectivity. The great majority of these empirical studies
relies on functional magnetic resonance imaging (fMRI) which has a relatively poor temporal resolution.
Only a handful of studies has examined networks emerging from dynamic coherence at the millisec-
ond resolution and there are no investigations of coherence at the lowest frequencies in the power
spectrum—which has recently been shown to reflect long-range cortico-cortical connections. Here we
used electroencephalography (EEG) to assess dynamic brain connectivity in ASD focusing in the low-
frequency (delta) range. We found that connectivity patterns were distinct in ASD and control populations
and reflected a double dissociation: ASD subjects lacked long-range connections, with a most prominent
deficit in fronto-occipital connections. Conversely, individuals with ASD showed increased short-range
connections in lateral–frontal electrodes. This effect between categories showed a consistent parametric

dependency: as ASD severity increased, short-range coherence was more pronounced and long-range
coherence decreased. Theoretical arguments have been proposed arguing that distinct patterns of con-
nectivity may result in networks with different efficiency in transmission of information. We show that
the networks in ASD subjects have less Clustering coefficient, greater Characteristic Path Length than
controls – indicating that the topology of the network departs from small-world behaviour – and greater
modularity. Together these results show that delta-band coherence reveal qualitative and quantitative

SD p
aspects associated with A

. Introduction

Autism or Autism Spectrum Disorder (ASD) is a neurode-
elopmental disorder characterized by a triad of impairments
n social interaction, communication, and behavioural flexibility
APA, 2000). There is increasing evidence that ASD could be a
ondition of altered brain connectivity (Belmonte et al., 2004;
Please cite this article in press as: Barttfeld, P., et al. A big-world network in
connections and an excess of short-range connections. Neuropsychologia (2

ourchesne & Pierce, 2005; Just, Cherkassky, Keller, & Minshew,
004; Just, Cherkassky, Keller, Kana, & Minshew, 2007; Markram,
inaldi, & Markram, 2007; Wicker et al., 2008). Anatomical stud-

es showed that individuals with ASD have smaller and more
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densely packed columns of neuronal cells (Casanova & Trippe,
2009; Casanova et al., 2006; Hughes, 2007). Structural MRI stud-
ies have reported a reduced corpus callosum (Alexander et al.,
2007; Egaas, Courchesne, & Saitoh, 1995) and abnormal anatomy
and connections of the limbic–striatal social brain system in ASD
(McAlonan et al., 2005). fMRI studies also yielded evidence of
altered connectivity: connectivity within the frontal lobe seems
differently organized, and areas such as prefrontal cortex, pre-
cuneus/posterior cingulate cortex and superior temporal sulcus,
appear to be poorly connected (Just, Cherkassky, Keller, Kana,
& Minshew, 2004; Just, Cherkassky, Keller, Kana, et al., 2007;
Kleinhans et al., 2008; Koshino et al., 2005; Mason, Williams,
ASD: Dynamical connectivity analysis reflects a deficit in long-range
010), doi:10.1016/j.neuropsychologia.2010.11.024

Kana, Minshew, & Just, 2008; Welchew et al., 2005). Recent
fMRI studies have moved away from the social and cognitive
deficit models and looked at the functional connectivity between
areas of the so-called default mode network (DMN), i.e. net-
works that become activated at rest (Gusnard & Raichle, 2001;

dx.doi.org/10.1016/j.neuropsychologia.2010.11.024
dx.doi.org/10.1016/j.neuropsychologia.2010.11.024
http://www.sciencedirect.com/science/journal/00283932
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Table 1
Details of ASD subjects: age, diagnosis, IQ and ADOS scores.

Age Sex Diagnosis Verbal IQ Exec IQ Total IQ ADOS

Comm. Soc. int. Total

32 F Asperger 116 78 99 3 4 7
26 M HFA 98 80 90 10 5 15
22 M HFA 96 74 85 3 9 12
17 M HFA 111 127 120 5 8 13
17 M Asperger 88 83 85 2 7 9
30 M HFA 114 130 125 4 8 12
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the method in time) we obtained a time series of SL for each pair of channels.This
38 M HFA 111 13
24 M HFA 104 8
16 M HFA 99 8
16 M HFA 94 10

aichle, 2009). Results revealed decreased connectivity between
he medial prefrontal cortex and precuneus/posterior cingulate
ortex (Cherkassky, Kana, Keller, & Just, 2006; Di Martino et al.,
009; Weng et al., 2010). The great majority of the evidence sig-
alling functional connectivity as a key aspect of ASD was obtained
sing fMRI. There is only a handful of studies assessing ASD
rain connectivity using the other canonical tool to study connec-
ivity, electroencephalography (EEG). Abnormal gamma activity
as been reported in autistic children, interpreted as supporting
ypotheses of abnormal connectivity (Brown, Gruber, Boucher,
ippon, & Brock, 2005). (Murias, Webb, Greenson, & Dawson,
008) and (Coben, Clarke, Hudspeth, & Barry, 2008) measured
onnectivity more directly using EEG coherence and reported
vidence of both under and over-connectivity in different fre-
uency bands in ASD populations. Understanding the patterns of
onnectivity in low frequencies – the delta band – remains unex-
lored.

Over the last years, analysis of coherence at low-frequencies
as gained great interest. Long-range intra-cortical and feedback
ortico-cortical connections, which are thought to be altered in
SD, are revealed by the slow cortical potentials (SCP) of the EEG

He & Raichle, 2009; He, Zempel, Snyder, & Raichle, 2010). Infor-
ation of the rectified power of the SCP, although distinct and

issociable from the raw signal e.g., during vigilance tasks (He et al.,
010) also correlates with the resting-state fMRI signal (Lu et al.,
007).

We investigated whether functional brain networks in EEG are
bnormally organized in the delta band in ASD, measuring coher-
nce in the raw filtered signals (He & Raichle, 2009; He et al., 2010).
e will show that control subjects have stronger long fronto-

ccipital connections, and weaker lateral frontal connections and,
oreover, that these differences are good predictors of ASD sever-

ty. When inspecting the impact of this connectivity pattern on
he global organization of functional network using graph theory

easures we observed that ASD present higher characteristic path
ength (L), smaller clustering coefficient (C) and higher modular-
ty index (MI), resulting in a less efficient brain network (Latora &

archiori, 2001).

. Materials and methods

.1. Participants

Two groups took part in this study. The ASD group included 10 adults with high-
unctioning autism or Asperger’s syndrome (9 men and 1 women; mean age = 23.8,
td = 7.6, Table 1). The individuals with ASD were provisionally accepted into the
tudy if they had received a diagnosis of infantile autism or Asperger’s syndrome
rom a child psychiatrist, developmental pediatrician, or licensed clinical psycholo-
Please cite this article in press as: Barttfeld, P., et al. A big-world network in
connections and an excess of short-range connections. Neuropsychologia (2

ist. Actual participation required that this diagnosis had been recently confirmed,
ith each subject having met the criteria for ASD within the past 3 years on the

asis of the revised fourth edition of the Diagnostic and Statistical Manual of Men-
al Condition (APA, 2000) and on the score on the Autistic Diagnostic Observation
chedule-Generic (Lord et al., 2000). The IQs were measured with the third edition
f the Wechsler Adult Intelligence Scale and ranged from 85 to 125 (mean = 101.7,
121 6 9 15
98 5 6 11
95 3 9 12
99 6 10 16

SD = 14.97). At the time of testing, no ASD subject had known associated medical
condition. As their mean IQ score was within the normal range, the ASD partici-
pants were individually matched to a group of 10 typically developing individuals
on the basis of sex and chronological age.

The participants in the control group (9 men, 1 women, mean age = 25.3,
std = 6.54). None of the volunteers had reported history of neurological or psychiatric
conditions.

2.2. EEG recordings

EEG were recorded with a Biosemi ActiveTwo 128 channel 24-bit resolution
system, with active electrodes (first amplifying stage on the electrode to improve
signal to noise ratio), digitalized at 512 Hz and low-passed DC-1/5th of the sample
rate (−3 dB) by a 5th order digital sync anti-aliasing filter. There were no additional
hardware filters during acquisition. 7-Min temporal signals were recorded during
an eyes-closed resting while subjects sat on a reclining chair in a sound attenuated
room with a dim light. During the experiment, participants and EEG recordings were
monitored to assure that they maintained vigilance and did not fall asleep. After the
acquisition, signals were re-referenced to the average of all electrodes, and filtered
on the delta band (0.5–3.5 Hz, ∼60 dB/decade roll-off). The signal was filtered using
the function eegfilt.m from the EEGLAB toolbox (Delorme & Makeig, 2004). This
function implements a two-way least squares finite impulse response filter. Filter
order was calculated as

3 · SamplingRate
Low Cuttoff

= 3072

Synchronisation between all pair wise combinations of EEG channels were com-
puted for all subjects with the Synchronisation Likelihood (SL) method (Montez,
Linkenkaer-Hansen, van Dijk, & Stam, 2006). All the details of the methodology can
be found at Montez et al. (2006). For clarity here we outline the critical aspects of
the method.The SL method maps the original data to a set of vectors, essentially
resampling the data at variable time bins (Lags), referred as embedding vectors. An
embedding vector has the form:

Xk,i = (Xk,i, Xk,i+L, Xk,i+2L, Xk,i(m−1)L)

where k is the channel number, i is a sample reference of the raw data, L is the lag and
m is the length of the vector, which will determine the dimension of the state space
to search for similarity. In our analysis L and m were set to 49 and 22. These values, as
all the parameters, were set following (Montez et al., 2006). The embedding vectors
are then used to localize times series with recurrent dynamical themes for each
electrode. This is done by measuring the Euclidean distance among a fixed reference
vector Xk,i and the set of all embedded vectors Xk,j that lie in a window around time
i (this window was fixed to 3049). From this analysis, for each electrode and each
value of i, one obtains the set of similar vectors (or “recurrences”), arbitrarily defined
as the 5% of vectors closest to Xk,i . Then, for each time i we compute SL between
channels k1 and k2 measuring the similitude between their closest reference vectors
(i.e. the distributions of recurrences).

SLi = nk1k2

nk1

where nk1k2 is the number of coincident recurrences found in channel k1 and in chan-
nel k2 at time i and nk1 is the number of recurrences found in channel k1 at time i. A
SL value close to 1 means that all recurrences of channel k1 are shared and coinci-
dent with the recurrences of channel k2. Repeating the procedure for all i (i.e. sliding
ASD: Dynamical connectivity analysis reflects a deficit in long-range
010), doi:10.1016/j.neuropsychologia.2010.11.024

procedure was conducted independently for each participant in the study. Hence,
from this analysis we obtained from each participant a matrix of 128 × 128 × N sam-
ples. We then collapsed this 3 dimensional matrix into a symmetrical matrix, where
each entry in the matrix represents the SL between the corresponding pair of elec-
trodes averaged throughout all samples. All subsequent analysis and statistics were
performed on these SL matrices.

dx.doi.org/10.1016/j.neuropsychologia.2010.11.024
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occipito-frontal connections.
The previous analysis shows that ADOS is a good predictor of the

precise pattern of SL connectivity. The IQ distribution of patients
was in the normal range, but patients were not matched individ-
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.3. Graph theory metrics

The connectivity matrix defines a weighted graph where each electrode corre-
ponds to a node and the weight of each link is determined by the SL of the electrode
air. To calculate network measures, SL matrices were converted to binary undi-
ected matrices by applying a threshold T. We explored a broad range of values of
.01 < T < 0.2, with increments of 0.0005 and repeated the full analysis for each value
f T. After transforming the SL-matrix to a binary undirected graph, we measured the
lustering Coefficient C, the Characteristic Path Length L and Modularity Index MI
sing the BCT toolbox (Rubinov & Sporns, 2009). For statistical comparisons of graph
ased metrics, we performed ANOVAs with group (control or ASD) and threshold
binned in 8) as independent factors. Errors were calculated using bootstrap (Efron

Tibshirani, 1994), which were used to explore statistical differences for all indi-
idual thresholds. The bootstrap probability was also calculated, resampling 2000
imes each metric for both groups, and calculating the percentage of times the mean

etric of a group was larger than the mean metric of the other group. Network
isualizations were performed using the Pajek software package (Batagelj & Mrvar,
998) using a Kamada–Kawai layout algorithm (Kamada & Kawai, 1989).

. Results

For each participant in this study, we calculated the Synchro-
ization Likelihood (SL) across all pairs of channels—see Section 2
Montez et al., 2006) for details. SL provides a measure of tempo-
al coherence between two temporal signals. This measure is more
ensitive than simply a linear-correlation because: (1) it does not
ssume linearity in the coherence and (2) it is sensitive to phase-
hifted coherent frequency bands which may result in a null linear
orrelation. This analysis collapsed the stationary EEG data of each
articipant, band passed in the delta range to a 128 × 128 synchro-
ization matrix (henceforth referred as SL-matrix). The element
i,j) of the matrix provides a measure of the temporal similarity
t low frequencies of electrodes i and j during eyes-closed station-
ry EEG, which we refer as functional connectivity. In what follows,
e analyse statistical differences in functional connectivity for ASD

nd control population.
To calculate significant differences in SL patterns across groups,

e conducted a paired t-test with the SL value for each pair of
hannels (Fig. 1b). A positive t-value indicates that SL increased
n control compared to ASD population. Conversely, a negative
-value indicates that SL is greater in ASD than in the control
opulation. The distribution of t-values (Fig. 1d) was significantly
hifted towards positive values (mean = 0.57; std = 1.11; t-test:
= 0, CImin = 0.55; CImax = 0.58) indicating that the global trend
as that SL was greater in the control population. Our interest
as to understand the topography of the tails of this distribu-

ion, i.e. which pairs of electrodes had a greater difference in SL
etween ASD and control population. For this, we simply deter-
ined an arbitrary cut-off at t = 2 (Fig. 1b and d) and considered

he resulting matrix with values 1, 0 or −1 depending on whether
> 2, 2 > t > −2 or −2 > t (Fig. 1f). This cut-off is certainly arbitrary
ut none of the results discussed in what follows depend on this
hoice (see Supplementary Fig. I for a progression of the synchro-
ization topographies for varying thresholds). The previous mask
lters pairs of electrodes for which we found significant differences

n similarity between both groups. To further constrain the number
f comparisons and generate a relatively sparse pattern of con-
ections amenable to visualize its topography, we considered only
airs of electrode with sufficient similarity for both groups. This was
chieved applying a mask resulting from the intersection of pairs of
lectrodes with SL > 0.03 for the patients and for the controls grand
verage (Fig. 1c and e).

The topographic projections of connections whose strength
ncreased (light gray) or decreased (dark gray) in ASD compared to
Please cite this article in press as: Barttfeld, P., et al. A big-world network in
connections and an excess of short-range connections. Neuropsychologia (2

ontrol participants (Fig. 1h) showed a very consistent pattern. Con-
ections which were stronger in the control group were localized

n the frontal lobe and extended over the midline to the occipital
ortex. They also included long-range connections between these
egions. On the contrary, connections which were stronger in the
 PRESS
logia xxx (2010) xxx–xxx 3

ASD group were very focal and largely localized to the lateral frontal
electrodes. These observations did not change qualitatively when
changing the thresholds of the binary difference matrix or the acti-
vation mask (Supplementary Fig. I).

To further quantify these observations, and to explore in a sta-
tistical manner whether fronto-occipital interactions are greater in
control group and lateral–frontal interactions in the ASD group, we
defined four different regions: Mid Frontal, Frontal Right, Frontal
Left and Occipital (Fig. 2a). We then measured global connectivity
across regions (including the connectivity of a region with itself),
performing a t-test comparing the SL value of the weighted SL-
matrix for all pairs of electrodes of the corresponding regions. This
analysis revealed that local connections in Mid Frontal decrease
in ASD compared to controls (t-test: t(1,9) = 3.02; p = 0.01), as well
as the long connections between Mid Frontal and Occipital (t-test:
t(1,9) = 2.21; p = 0.05) (Fig. 2b). On the contrary, local connections
in both Lateral Frontal areas are enhanced in ASD, being significant
only in the Frontal Left (t-test: t(1,9) = −2.35; p < 0.05), not in the
Frontal Right (t-test: t(1,9) = −0.82; p > 0.1). All other combinations
of regions (Fig. 2b) showed no statistical diferences.

The previous analysis showed consistent and topographically
organized differences in SL between ASD and control groups, sug-
gesting that a distinct pattern of dynamical connectivity may be
related to the physiopathology of ASD. A more severe test to this
hypothesis involves examining progressive changes in connectiv-
ity with a continuous progression of ASD. To examine whether the
observed difference in connectivity progressed with ASD severity,
we measured the correlations between ADOS score – which indexes
ASD severity and varied from 7 to 16 within our population – and
SL-connectivity of each pair of electrodes. Fig. 3a shows two rep-
resentative examples of SL pairs with a negative (light gray) and a
positive (dark gray) correlation with ADOS score. The topographical
distribution of the correlation of ADOS within the ASD population
followed the same pattern than SL differences between groups:
medial electrodes are negatively correlated with ADOS (and hence
their SL is greater with decreasing levels of ASD and progressing
to control population); on the contrary lateral electrodes, predom-
inantly short local connections, have SL values which increase with
ADOS score. Note that, also coherently with the group analysis, the
global trend is that negative correlations (light gray edges, Fig. 3b)
are more prominent indicating that, on average, SL connectivity
decreases with increasing level of ASD. To test quantitatively the
hypothesis that short-range connections are overweighed in ASD
and long-range connections are scanter, we measured the distribu-
tion of correlation coefficients for all pairs of electrodes at any given
length1 (Fig. 3c). Positive correlations (SL increases with ADOS
score) were very significant only within a very short range. On the
contrary negative correlations (SL increases with decreasing ADOS
score) were broadly distributed and extended over distant pairs of
electrodes (Fig. 3c). This scaling effect becomes clearer in a more
quantitative manner when considering the mean value of positive
and negative correlations averaged across all pairs at a fixed dis-
tance (Fig. 3d). These results confirm our findings based on group
analysis: ASD connectivity is overall of shorter range and domi-
nantly localized to lateral region of the brain, with a deficit of medial
ASD: Dynamical connectivity analysis reflects a deficit in long-range
010), doi:10.1016/j.neuropsychologia.2010.11.024

1 Here we considered the planar distance between pairs of electrodes. This is only
an approximation as interactions reflect coherent sources in a 3D volume. For the
purpose of this analysis, were we merely want to explore broad scaling properties,
this approximation seems adequate. Analyzing distributions considering spherical
distances yielded virtually the same result.

dx.doi.org/10.1016/j.neuropsychologia.2010.11.024
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Fig. 1. Differences in connectivity between ASD and Control groups. (a) SL-matrix, averaged for all participants in this study. (b) t-values of the SL difference between ASD
and controls for each pair of channels. A dark gray (light gray) colour in the matrix indicates that SL is increased (decreased) in control compared to ASD population. (c)
Proportion of links in the SL-matrix remaining after appliance of different SL-value filters. The red line shows the threshold chosen for the analysis. (d) Distribution of t-values.
Red lines indicate the thresholds chosen for the analysis. (e) Binary matrix showing links exceeding the SL threshold. (f) Resulting matrix of thresholding the t-value matrix
of (b). Values are 1, 0 or −1. (g) Combination of both filters gives the matrix valued in 1 and −1 for those links surpassing both filters. (h) Topography of the links exceeding
the threshold: dark gray lines show connections significantly higher in controls, light gray lines show connections significantly higher in ASD.

dx.doi.org/10.1016/j.neuropsychologia.2010.11.024
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ig. 2. SL averaged across different regions. (a) Scheme of the four regions defined f
nly the upper-diagonal triangular matrix is shown). Comparison within the diagon
etween mid frontal and occipital are diminished in ASD compared to controls. Loc

ally to controls (i.e. there was not a one to one correspondence
f IQ between both groups). To assure that the effect of ADOS in
L pattern of connectivity was not biased by correlations with IQ
e measured the correlations between ADOS and IQ in the patient

roup. ADOS and SL were largely independent (Fig. 4a, linear regres-
ion between both variables, p > 0.45). While this shows that the
ffect of ADOS on SL is unlikely to be accounted by covariations
ith IQ, IQ still may explain residual variance of SL patterns. To

nvestigate a possible effect of IQ in SL we performed a multiple
egression of SL (one for each pair of channels, as done above), with
Q and ADOS as regressors. The effect of ADOS is virtually identi-
al to the previous analysis, which is expected if both variables
re independent (compare Figs. 3b and 4d). A direct comparison of
orrelation matrices for IQ and ADOS (Fig. 4b and c) shows that IQ
ovariations are very weak, implying that it has virtually no effect
Please cite this article in press as: Barttfeld, P., et al. A big-world network in
connections and an excess of short-range connections. Neuropsychologia (2

n our observables.
We next investigated whether these differences resulted in net-

ork topologies which may have consequences in properties of
nformation flow in the ASD and control group. Using the Kamada
awai algorithm (Kamada & Kawai, 1989), we embedded the ASD
s analysis. (b) SL connections for all pair or regions (connections are symmetric son
w within region connections. Local connections in mid frontal and long connections
nections in both Lateral Frontal areas are enhanced in ASD.

and control networks, showing the 1000 strongest connections,
in the two-dimensional plane (Fig. 5a; visualizations of the net-
works at fixed threshold gave qualitatively the same results, see
Supplementary Fig. II). By simple inspection, it is evident that the
networks are qualitatively different. Control network presents a
central core of nodes—composed mainly by Mid-Frontal and Occip-
ital electrodes, considering the regions defined in Fig. 2a. The ASD
network is homogeneously connected, has a larger diameter and
appears to be more modular and less clustered.

To quantify these observations we used four canonical graph
theory metrics: Degree (K), Characteristic Path Length (L), Cluster-
ing Coefficient (C) and Modularity Index (MI). The degree (K) of the
network, which constitutes its simplest statistical indicator, simply
measures the average number of neighbours of each node (Fig. 5b
and c). As expected, K diminished as the threshold increases, dis-
ASD: Dynamical connectivity analysis reflects a deficit in long-range
010), doi:10.1016/j.neuropsychologia.2010.11.024

connecting nodes and diminishing the size of the network (Stam,
Jones, Nolte, Breakspear, & Scheltens, 2007). To investigate the
effect of ASD on K, we submitted the K values to an ANOVA with
group (control or ASD) and T (binned in 8) as independent fac-
tors. Results revealed a significant effect of group (F(1,1) = 14.48;

dx.doi.org/10.1016/j.neuropsychologia.2010.11.024
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Fig. 3. Relation between SL and ADOS. (a) Representative links showing a positive and a negative relation between SL and ADOS. (b) Topographic projection of the coefficients
of the regression, at two different thresholds. Light gray lines show negative coefficients (negative relation between SL and ASD severity) and dark gray lines show positive
c cient
d is m
c are on
l ection

p
n
T
e
w
a
t
w
c
t
s
(
i

oefficients (positive relation between SL and ASD severity) (c) Histograms of coeffi
ecays monotonically as the distance increases. Negative coefficients distribution
orrelation coefficients as a function of distance. For short distances, correlations
ong distances, correlations are on average negative indicating that long range conn

< 0.01) as well as for threshold (F(1,7) = 662; p < 0,01), and a sig-
ificant interaction between both factors (F(1,1) = 12.15; p < 0.01).
his shows that K was higher for the control group and that this
ffect is not invariant for all thresholds (Fig. 5b). To further quantify
here the differences between groups are located, we conducted
bootstrap analysis to compare K at every threshold. We found

hat for an intermediate range of T values (0.034–0.093), the degree
as significantly higher in controls than in ASD, the most signifi-
Please cite this article in press as: Barttfeld, P., et al. A big-world network in
connections and an excess of short-range connections. Neuropsychologia (2

ant difference found for T = 0.056 (bootstrap test, p < 0.01). At this
hreshold, we explored the topography of K for both groups. The
calp in Fig. 5c shows the difference between scalps of both groups
Control–ASD). As with our previous findings, while the main find-
ng is that K increases for controls compared to ASD on average,
s as a function of distance between electrodes. The fraction of positive coefficients
ore homogeneous and remains significant at longer distances. (d) Mean value of
average positive, indicating that short range connections increase with ADOS. At
s decrease with ADOS.

it displays a rich topographical distribution with areas showing
larger K and areas showing smaller K than ASD: Control group
shows larger K than ASD in the Mid Frontal and Occipital areas,
and smaller K in the lateral fronto-parietal regions, a distribution
consistent with the observed pattern in Figs. 1 and 2 (green dots
mark electrodes where Kcontrol > KASD; pink dots mark electrodes
where KASD > Kcontrol, p < 0.01).

To quantify the notion of homogeneity we measured the distri-
ASD: Dynamical connectivity analysis reflects a deficit in long-range
010), doi:10.1016/j.neuropsychologia.2010.11.024

bution of K at different nodes (simply comparing the max and min
K, a standard deviation of the distribution yielded the same results).
Variations in K were less pronounced in ASD networks. At a fixed
threshold the relation min(K)/max(K) for a given subject is larger in
ASD than in Controls (mean controls = 0.02; mean ASD = 0.05; t(1,9):

dx.doi.org/10.1016/j.neuropsychologia.2010.11.024
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ig. 4. Relation between IQ, ADOS and SL. (a) Scatter plot of the ADOS and IQ scor
or each pair of channels), with IQ and ADOS as regressors. (c) Topographic project
oefficients (negative relation between SL and ASD severity) and dark gray lines show
or IQ, from the same multiple regression of SL, with IQ and ADOS as regressors. (d)

.39; p < 0.05) demonstrating a more homogeneously connected
etwork in ASD.

The overall dependence of the Characteristic Path Length with T
lso followed a well-known behaviour (Fig. 5d). As T increases, less
dges remain and hence L increases. For very high values of T, the
raph disconnects in several components, only short-range links
emaining and hence L starts decreasing. To investigate the effect
f ASD on Characteristic Path Length, we submitted L to an ANOVA
ith group (control or ASD) and T (binned in 8) as independent

actors. Results revealed a significant effect of group (F(1,1) = 8.56;
< 0.05) as well as for threshold (F(1,7) = 186; p < 0.01), and a sig-
ificant interaction between both factors (F(1,1) = 4.91; p < 0.01),
howing that L was higher for the ASD group (Fig. 5d). To further
uantify at which thresholds differences between groups were sig-
Please cite this article in press as: Barttfeld, P., et al. A big-world network in
connections and an excess of short-range connections. Neuropsychologia (2

ificant, we conducted a bootstrap analysis to compare L at every
hreshold. At an intermediate range of values of T (0.042–0.073), L
s significantly larger for the ASD group, the most significant differ-
nce found at T = 0.056 (bootstrap test, p < 0.01).
ASD subject. (b) Beta coefficients for ADOS, from a multiple regression of SL (one
the beta coefficients for ADOS, at threshold = 0.05. Light gray lines show negative

tive coefficients (positive relation between SL and ASD severity) (c) Beta coefficients
graphic projection of the beta coefficients for IQ, at threshold = 0.05.

We performed the same analysis to examine whether Clustering
coefficient of ASD and Control networks differed (Fig. 5e). We sub-
mitted C to an ANOVA with group (control or ASD) and T (binned
in 8). Results revealed a significant effect of group (F(1,1) = 120.23;
p < 0.01) as well as for threshold (F(1,7) = 295; p < 0.01), and a non
significant interaction between both factors (F(1,1) = 1.88; p > 0.05),
showing that the C was higher for the control group (Fig. 5e). Post-
hoc bootstrap analysis comparing C at every threshold showed that,
at an intermediate range of values of T (0.017–0.044), C is signifi-
cantly larger for the control group; the most significant difference
is found for T = 0.032 (bootstrap test, p < 0.01).

Much effort has been devoted to the study of statistical indi-
cators of networks, particularly the Characteristic Path Length and
the Clustering Coefficient. An ubiquitous present topological net-
ASD: Dynamical connectivity analysis reflects a deficit in long-range
010), doi:10.1016/j.neuropsychologia.2010.11.024

work usually referred to as small-world, which has a relatively short
(compared to random networks) Characteristic Path Length and
high Clustering Coefficient has been shown to be optimal for infor-
mation transfer and storage (Sporns & Zwi, 2004). Our combined

dx.doi.org/10.1016/j.neuropsychologia.2010.11.024
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ig. 5. Topology of ASD and control functional connectivity networks: (a) minimal
roups defined in Fig. 2. (b) Average degree as a function of threshold. Control grou
reen dots indicate electrodes where Kcontrol > KASD. Pink dots indicate electrodes w
ontrol group shows lower L than ASD. (e) Clustering coefficient (C) as a function
hreshold. ASD group shows higher modularity than Controls.

ndings (increased L and decreased C in ASD compared to control
etworks) indicate that the ASD network topology is consistently

arther from being a small world than control network.
A direct consequence of the lack of long-range connections

ound in ASD is that cortical areas may become relatively isolated
rom each other, resulting in turn in a more modular organization
Gallos, Song, Havlin, & Makse, 2007; Galvao et al., 2010). To assess
his in a quantitative manner, we estimated the Modulation Index
MI) that estimates the tendency of a network to split into mod-
les. The dependence of MI with T follows a similar trend than L
Fig. 5f): as T increases, less edges remain and MI (and the number
f actual modules) increases. To investigate the effect of ASD on MI,
e submitted this data to an ANOVA with group (control or ASD)

nd T (binned in 8) as independent factors. Results revealed a signif-
cant effect of group (F(1,1) = 40.76; p < 0.01) as well as for threshold
F(1,7) = 220; p < 0.01), and a significant interaction between both
actors (F(1,1) = 18.64; p < 0.01), showing that the MI was higher for
he ASD group (Fig. 5f). To further quantify where the differences
etween groups are located, we conducted a bootstrap analysis to
ompare MI at every threshold. We found that for a very wide range
f values of T (0.005–0.14), MI is significantly larger for the ASD
roup, the most significant difference found at T = 0.065 (bootstrap
est, p < 0.01)
Please cite this article in press as: Barttfeld, P., et al. A big-world network in
connections and an excess of short-range connections. Neuropsychologia (2

. Discussion

The main purpose of this study was to characterize and com-
are resting state functional brain networks in subjects with ASD
plots of the average networks for both groups. Colors represent the four electrode
s higher degree than ASD. (b) Topographic map of the degree at threshold = 0.056.

KASD > Kcontrol, p < 0.01. (d) Characteristic path length (L) as a function of threshold.
reshold. Control group shows higher C than ASD. (f) Modularity as a function of

and neurotypical subjects. We studied networks derived from sta-
tionary EEG data filtered in the delta band. We observed reliable and
consistent differences in the connectivity patterns of both groups.
ASD subjects showed a lack of long-range, fronto-frontal and fronto
occipital connections, and an enhancement of local, lateral frontal
connections. While the spatial resolution of EEG is limited, the
topographical analysis reported here can only be understood as
referring to broad cortical regions. With this caveat and note of cau-
tion, our results are consistent with fMRI data showing diminished
or lack of connectivity in the midline, more specifically between
the medial prefrontal cortex and precuneus (Courchesne & Pierce,
2005; Hughes, 2007; Kana, Keller, Cherkassky, Minshew, & Just,
2006; Weng et al., 2010). Similarly, our observation of increased
connectivity in prefronto-lateral nodes might be related with a lack
of inhibition in dorsolateral Prefrontal cortex or altered connectiv-
ity of the Anterior Insula, (Di Martino et al., 2009; Kennedy, Redcay,
& Courchesne, 2006; Weng et al., 2010).

Beyond broad group differences, our observation of a coher-
ent topographic representation in a parametric measure of
ASD determined by the ADOS score is indicative of a grad-
ual change of network properties with increasing severity of
the syndrome. Our results also revealed global trends related
to proximity of correlations and ASD: for increased ASD sever-
ASD: Dynamical connectivity analysis reflects a deficit in long-range
010), doi:10.1016/j.neuropsychologia.2010.11.024

ity, local connections increased monotonically and long range
connections decreased. This global trend is also inline with
fMRI results relating the severity of ASD and fMRI correlation
(Di Martino et al., 2009; Kennedy et al., 2006; Weng et al.,
2010).

dx.doi.org/10.1016/j.neuropsychologia.2010.11.024
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Changes in connectivity patterns have an impact in the global
rganization of a network which in turn determine the efficiency
f information transfer and storage (Barabasi, 2009; Gallos, Song,
avlin, & Makse, 2007; Galvao et al., 2010; Sigman & Cecchi,
002; Sporns & Zwi, 2004). Small-world networks have attracted
reat attention during the last decade (Watts & Strogatz, 1998)
ecause they are ubiquitously present in a broad range of natural
henomenon but also because they establish an optimal balance
etween local specialization and global integration (Sporns & Zwi,
004). We tentatively suggest that the functional networks of ASD
ubjects reveal a big-world structure, which may depart from an
ptimal organization for information processing and storage.

Cortico-cortical connections can be roughly classified in two
ain groups (Schroeder & Lakatos, 2009; Sporns & Zwi, 2004):

ocal connections linking neurons in the same cortical area (critical
n generating functional specificity i.e., information) and long-
istance connections between neurons of different cortical regions,
hat ensure that distant cortical sites can interact rapidly to
enerate dynamical patterns of temporal correlations, allowing
he integration of different sources of information into coherent
ehavioural and cognitive states (Bressler, 1995; Friston, 2002;
icoll, Larkman, & Blakemore, 1993; Sporns & Zwi, 2004). The dif-

erences we found in this study suggest that this compromise is
nbalanced in ASD. The reduced long range connections may pro-
ide a physiological measure for the lack of proper integration of
nformation observed in ASD (Frith, 1989). In this sense, the orga-
ization of the whole brain networks might be related with the
nown differences in information processing between typical and
SD individuals.

A ubiquitous aspect of brain function is its modular organi-
ation, with a large number of processors (neurons, columns or
ntire areas) working in parallel. The workspace theory argues that
distributed set of neurons with long axons provides a transient

lobal “broadcasting” system enabling communication between
rbitrary and otherwise not directly connected brain processors
Baars, 1988, 2005; Dehaene & Naccache, 2001). While at this stage

erely speculative and requiring further investigation, these find-
ngs suggest that ASD individuals may have an atypical workspace
ystem, revealed in enhanced local connectivity, a more homoge-
eous network lacking hubs and central nodes, and a more modular
rganization. While the workspace system conveys brain function
ith a flexible communication protocol this comes at a cost: it

s slow and intrinsically serial (Pashler & O’Brien, 1993; Sergent,
aillet, & Dehaene, 2005; Sigman & Dehaene, 2008; Zylberberg,
ernandez Slezak, Roelfsema, Dehaene, & Sigman, 2010). Hence,
functional manifestation of the ASD network might be to favour
ore parallel processing of information – being the cost of this

nhancement the lack of behavioural flexibility, core symptom of
ndividuals with ASD – an idea that resonates with the well known
kills and handicaps of individuals with ASD, such as a detailed
erception at the expense of a poorer integration into a big pic-
ure and, in rare cases, extraordinary performances in tasks such
s the numerosity skill or calendar computation, typical of many
utistic savants (Dakin & Frith, 2005; Mottron, Dawson, Soulieres,
ubert, & Burack, 2006; Thioux, Stark, Klaiman, & Schultz, 2006).

f these speculations were true, ASD symptoms, its enhancements
nd handicaps, could be the symptoms of the lack of a proper
orkspace system.

A fundamental open aspect of these results is whether the
etwork changes observed in this experiment reveal structural
ifferences, a distinct pattern of thoughts and mental content dur-
Please cite this article in press as: Barttfeld, P., et al. A big-world network in
connections and an excess of short-range connections. Neuropsychologia (2

ng free thinking, or both. Network differences are not likely to
e explained by changes in arousal since neither the video-image
uring the experiment nor the EEG traces revealed any indica-
ion of sleep transitions (Ogilvie, 2001). However, as in all resting
tate experiments, participants where free to elicit any kind of
 PRESS
logia xxx (2010) xxx–xxx 9

thoughts and it is likely that the mental content may vary across
both groups. After completion of the experiment, we interviewed
a fraction of our control participants and patients about the con-
tents of their thoughts to specifically address whether ASD patients
elicited highly stereotyped, arithmetic or recursive thoughts. While
our questionnaire was mostly qualitative, results did not reflect
any obvious difference between both groups. Of six interviewed
patients the responses were widely varied without specific refer-
ences to stereotyped thoughts or to a consistent pattern of mental
content. One patient (a programmer) reported thoughts about his
work, related to the development of an operating system and cor-
respondences with a colleague in Europe. Another thought about
the life and events of a famous Argentinean actress and rehearsed
several scenes of her acting career. One patient reported thoughts
(with imagery) about his pet in different situations, another men-
tioned that his thoughts were focused on not moving to conform
the experimentalist requests and one patient could barely recon-
struct his thoughts and reported a very confusing story with lots of
pronouns and unspecific pointers (i.e. I thought about things, that
changed,. . .). It is important to remark that while the patients in
this study had normal IQs none of them presented savant charac-
teristics. These observations do not demonstrate that changes in
the functional network are unrelated to group differences in the
patterns of thought. They simply reflect that, if these differences
exist, they are not so evident as to be capture by a brief descrip-
tion of mental content. Since the pioneering work of Wundt, (De
Groot, 1966; Wundt, 1896) it has become clear that despite obvi-
ous systematic difficulties, a detailed quantitative exploration of
the content of mental states in relation to the network properties
observed during free thought should open a new venue to under-
stand the ultimate goal of cognition, the neural basis of thoughts.
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